For faster navigation, this Iframe is preloading the Wikiwand page for המישור המרוכב.

המישור המרוכב

הצגת המספר 3+2i במישור המרוכב
הצגת המספר 3+2i במישור המרוכב

מישור המספרים המרוכבים הוא אמצעי להצגת המספרים המרוכבים בצורה גאומטרית, כשם שציר המספרים משמש להצגת המספרים הממשיים. מישור המספרים המרוכבים נקרא גם "מישור גאוס" על שם המתמטיקאי קרל פרידריך גאוס שהשתמש בו לצורך פיתוח חלק מרעיונותיו.

מישור המספרים המרוכבים מורכב למעשה משני צירים חד-ממדיים שביחד יוצרים מישור דו-ממדי. כל נקודה במישור מייצגת מספר מרוכב. קואורדינטת (שיעור) הציר המאוזן של הנקודה מייצג את הערך הממשי וקואורדינטת הציר המאונך מייצג את הערך המדומה של המספר. כך לדוגמה מיוצג המספר המרוכב הנתון על ידי (עבור ו- ממשיים) על ידי הנקודה . הדבר דומה מאוד למערכת צירים רגילה, רק שכאן כל ציר מייצג חלק אחר של המספר המרוכב במקום את קואורדינטות הנקודה. הצגה כזאת לפי קואורדינטות נקראת הצגה קרטזית.

הצגה פולארית

בנוסף להצגה הקרטזית ניתן גם להציג מספרים מרוכבים בהצגה פולארית (בעברית נקראת הצגה זאת הצגה קטבית). בהצגה זאת, במקום לתת לכל מספר מרוכב ערך לחלק הממשי וערך לחלק המדומה שלו, ניתנים לו שני ערכים אחרים: המרחק מראשית הצירים (הרדיוס) והזווית בין הכיוון החיובי של הציר הממשי לקטע המחבר את הנקודה עם ראשית הצירים (נקודת האפס). כך לדוגמה המספר המרוכב שמרחקו מראשית הצירים הוא והזווית היא יוצג בהצגה פולארית על ידי הנקודה .

הקשר בין שתי ההצגות נתון בנוסחאות הבאות:

[1]

ובכיוון ההפוך:

כאשר המספר המרוכב נתון על ידי: , הוא הרדיוס של ו- היא הזווית שלו בהצגה פולארית.

מנוסחאות אלו קל לראות ש: . נהוג לקצר את הביטוי ל- .

על פי נוסחת אוילר, ניתן לקבל גם את הקשר הבא: .

השפעת פעולות חשבון על ההצגה של מספרים מרוכבים במישור

חיבור

חיבור של שני מספרים מרוכבים ייתן מספר מרוכב חדש כך שהקואורדינטות הקרטזיות של המספר החדש יהיו סכום הקואורדינטות של המספרים המקוריים. הדבר דומה לכל חיבור וקטורי רגיל.

כפל

הצגה קרטזית

כפל של שני מספרים מרוכבים הנתונים בהצגה קרטזית ייתן מספר מרוכב חדש.

הצגה פולארית

כפל של שני מספרים מרוכבים הנתונים בהצגה פולארית ייתן מספר מרוכב חדש כך שרדיוסו של המספר החדש יהיה שווה למכפלת הרדיוסים של המספרים המקוריים והזווית שלו תהיה שווה לסכום הזוויות של המספרים המקוריים.

חזקה

חזקה של מספר מרוכב ב-n ניתנת לחישוב על פי משפט דה מואבר. מקבלים מספר שהרדיוס שלו הוא בחזקת n, והזווית היא כפול n.

שורש

הוצאת שורש מסדר n למספר מרוכב הנתון בהצגה פולארית (נסמנו כ-), ייתן סדרה של n מספרים מרוכבים שמהווים תשובות אפשריות. המספרים נמצאים על מעגל שמרכזו בראשית הצירים ורדיוסו , והם מהווים קודקודים של מצולע משוכלל בעל n צלעות. אם נסמן את סדרת התשובות האפשריות כ- (כל תשובה מסומנת על ידי שלם שונה, בין ל- (כולל), למשל וכו'), התשובות מקיימות:

כאשר ברדיאנים שקול לזווית של ).

טופולוגיה של המישור המרוכב

ראו גם

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא המישור המרוכב בוויקישיתוף

הערות שוליים

  1. ^ לחישוב מדויק יותר, ראו קואורדינטות קוטביות#מציאת הזווית
{{bottomLinkPreText}} {{bottomLinkText}}
המישור המרוכב
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.