For faster navigation, this Iframe is preloading the Wikiwand page for התפלגות אחידה רציפה.

התפלגות אחידה רציפה

התפלגות אחידה (רציפה)
פונקציית צפיפות ההסתברות
Uniform distribution PDF.png
פונקציית ההסתברות המצטברת
Uniform distribution CDF.png
מאפיינים
פרמטרים (יכול להיות גם איחוד של מספר קטעים)
תומך
פונקציית צפיפות הסתברות
(pdf)
פונקציית ההסתברות המצטברת
(cdf)
תוחלת
סטיית תקן
חציון
ערך שכיח (כל ערך בין a לבין b)
שונות
אנטרופיה
פונקציה יוצרת מומנטים
(mgf)
פונקציה אופיינית
צידוד
גבנוניות

התפלגות אחידה רציפהאנגלית: Continuous Uniform distribution) היא התפלגות רציפה בה לכל הקטעים בעלי אותו אורך, הנמצאים בתומך שלה, הם בעלי הסתברות שווה.

תומך ההתפלגות האחידה הרציפה הוא קטע, ההתפלגות נתונה בעזרת שני פרמטרים, הקרויים לרוב ו- , ומציינים את קצוות הקטע המהווה התומך, ותסומן לרוב על ידי .

מאפיינים סטטיסטיים

מאפיינים מגדירים

בהינתן משתנה מקרי פונקציית צפיפות ההסתברות שלו היא:

פונקציית ההתפלגות המצטברת של המשתנה המקרי היא:

מומנטים ופונקציות יוצרות

תוחלתו ושונותו של המשתנה המקרי נתונות על ידי הנוסחאות:

הנוסחא למומנט מסדר של המשתנה המקרי היא:

המומנט הממרוכז ה--י הוא:

בפרט ניתן לראות כי המומנטים הממורכזים מסדר אי-זוגי מתאפסים. עובדה זו נובעת בקלות מהיות סימטרי סביב הממוצע.

הפונקציה יוצרת המומנטים של המשתנה המקרי נתונה על ידי:

בדומה, הפונקציה האופיינית של המשתנה המקרי היא:


קשרים להתפלגויות אחרות

  • מתוך משתנה מקרי אחיד ניתן לייצר כל התפלגות - עקרון דגימת ההעתקה ההופכית (באנגלית: Inverse transform sampling) גורס שאם היא פונקציית התפלגות, ומגדירים את הפונקציה ההופכית המוכללת של על ידי ,אז למשתנה יש פונקציית התפלגות השווה ל- . שימוש בשיטה זו יכול להיות קשה במקרים בהם קשה לחישוב.
  • לדוגמה, אם אז המשתנה מתפלג אקספוננציאלית עם פרמטר .
  • אם אז המשתנה מתפלג בטא - .
  • התפלגות משולשת היא התפלגות של סכום של שני משתנים מקריים רציפים בלתי תלויים המתפלגים אחיד.
  • התפלגות אירווין-הול היא ההתפלגות של סכום של משתנים מקריים בלתי-תלויים, כל אחד מתפלג .
  • אם , אז גם למשתנה המקרי יש התפלגות משולשת.

שימושים

סטטיסטיקה תאורטית

בסטטיסטיקה, כשמשתמשים במבחן ערך-p לבדיקת השערת אפס פשוטה, וההתפלגות של המבחן הסטטיסטי רציפה, אז ערך ה-p מתפלג אחיד בין 0 ל-1 כאשר השערת האפס נכונה.

תכנות

לשפות תכנות רבות יש את היכולת לייצר מספרים פסבדו-אקראיים שמתפלגים אחיד לפי התפלגות אחידה סטנדרטית, וזאת תוך שימוש במחולל מספרים פסבדו-אקראיים. שימוש בעקרון דגימת ההעתקה ההופכית מאפשר כך למתכנת לקבל ערך אקראי המתפלג כרצונו. כך למשל יכול מתכנת לסמלץ פעולות כמו הטלת מטבע או קובייה.

חישוב נומרי ושיטת מונטה-קרלו

נניח שנתונה לנו פונקציה אינטגרבילית , ורוצים לחשב את האינטגרל . אם לפונקציה יש פונקציה קדומה ידועה, ניתן לחשב את האינטגרל תוך שימוש במשפט היסודי של החשבון הדיפרנציאלי והאינטגרלי.

כשאין זה המקרה, ניתן לחשב את האינטגרל על ידי האבחנה הבאה - האינטגרל שווה ל- כאשר . את ערך התוחלת ניתן לקרב תוך שימוש בחוק המספרים הגדולים - מגרילים סדרת משתנים מקריים בלתי תלויים ומחשבים את הממוצע האמפירי . אי-שוויון צ'בישב גורר ש:

בשיטה זו נהוג להשתמש בסימולציה של מערכות מורכבות בפיזיקה,כימיה והנדסה. לדוגמה, כאשר יש צורך להבין מהי ההסתברות שמערכת הנדסית תכשל, ניתן להריץ סימולציה של המערכת מספר רב של פעמים ולראות מה יחס מספר הפעמים בה המערכת נכשלה.

שגיאות קוונטיזציה

בעיבוד אותות שגיאת קוונטיזציה היא שגיאה הנובעת מקירוב של אות אנלוגי על ידי אות דיגיטלי. עקב מספר הביטים הסופי באות הדיגיטלי, חייבת להיות שגיאה בקירוב זה - שגיאה הנובעת מעיגול או השמטה של הספרות האחרונות. כאשר עוצמת האות המקורי גדולה הרבה יותר מהביט הזניח ביותר, הקורלציה בין השגיאה לגודל האות המקורי קטנה מאוד, וכתוצאה מכך השגיאה מתפלגת, בקירוב, בצורה אחידה.

התפלגות אחידה סטנדרטית

המקרה הפרטי המתקבל מהגבלת הפרמטרים , נקראת התפלגות אחידה סטנדרטית, המסומנת על ידי .

עקרון דגימת ההעתקה ההופכית גורס כי מתוך התפלגות אחידה סטנדרטית ניתן להגיע לכל התפלגות שהיא, בהנחה ופונקציית ההתפלגות המצטברת ידועה.

ראו גם

קישורים חיצוניים



P mathematics.svg
ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.
{{bottomLinkPreText}} {{bottomLinkText}}
התפלגות אחידה רציפה
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Wikiwand 2.0 is here 🎉! We've made some exciting updates - No worries, you can always revert later on