For faster navigation, this Iframe is preloading the Wikiwand page for פונקציה רציפה (אנליזה).

פונקציה רציפה (אנליזה)

Disambig RTL.svg המונח "רציפות" מפנה לכאן. לערך העוסק בתפיסה האינטואיטיבית של רצף, ראו רציפות (פילוסופיה).
Disambig RTL.svg המונח "פונקציה רציפה" מפנה לכאן. לערך העוסק במונח בתחום הטופולוגיה, ראו פונקציה רציפה (טופולוגיה).
Nuvola apps edu mathematics blue-p.svg

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

פונקציית הסינוס רציפה בכל נקודה
פונקציית הסינוס רציפה בכל נקודה
פונקציית המדרגה אינה רציפה בנקודה 
  
    
      
        x
        =
        0
      
    
    {\displaystyle x=0}
פונקציית המדרגה אינה רציפה בנקודה

בחשבון אינפיניטסימלי, רציפות היא תכונה חשובה של פונקציה ממשית. באופן אינטואיטיבי (אך לא פורמלי) פונקציה רציפה היא פונקציה שאפשר לצייר את הגרף שלה מבלי להרים את העיפרון מהדף. רעיונות דומים מופיעים באופן כללי יותר במרחבים מטריים ואפילו מרחבים טופולוגיים כלליים - ראו רציפות (טופולוגיה).

הגדרות

פונקציה רציפה בנקודה אם יש לה גבול באותה נקודה והוא שווה לערך הפונקציה. לפיכך, כמו בהגדרת גבול ניתן להגדיר רציפות בשתי גישות שונות.

תהי פונקציה המקבלת ומחזירה ערכים ממשיים, המוגדרת בסביבה של .

נוסח ראשון (הגדרת הרציפות על-פי ויירשטראס, בלשון ):
הפונקציה רציפה בנקודה אם לכל (קטן כרצוננו) קיים מתאים כך שאם אז .
נוסח שני (הגדרת הרציפות על-פי היינה, בלשון הסדרות):
הפונקציה רציפה בנקודה אם לכל סדרה המקיימת מתקיים .

כאמור לעיל, שתי ההגדרות לרציפות שקולות.

פעולות בין פונקציות

  • סכום והפרש של שתי פונקציות רציפות הן פונקציות רציפות (דהיינו, בכל נקודה בה שתי הפונקציות רציפות, גם פונקציות הסכום וההפרש רציפות).
  • מכפלה של שתי פונקציות רציפות היא פונקציה רציפה.
  • מנה של שתי פונקציות רציפות היא פונקציה רציפה בתחום הגדרתה, דהיינו בכל נקודה בה הפונקציה במכנה אינה מתאפסת.
  • הרכבה של פונקציות רציפות היא פונקציה רציפה.

רציפות בקטע

אם פונקציה היא רציפה בכל נקודה בקטע, אומרים שהיא רציפה בקטע. במקרה כזה מותר למהירות שבה מתקרבים הערכים של לערכים של (כשהיא נמדדת בגודל של עבור נתון) להיות תלויה ב- . הפונקציה רציפה במידה שווה אם לכל אפשר לבחור את באופן שאינו תלוי ב- ; זוהי תכונה חזקה יותר. מאידך, לפי משפט קנטור, אם פונקציה רציפה בכל נקודה של קטע סגור (ובאופן כללי יותר קבוצה קומפקטית במרחב מטרי), אז היא רציפה במידה שווה.

מקובל לומר שפונקציה רציפה היא פונקציה בקטע ש"אפשר לצייר בלי להרים את העפרון מהדף". תיאור זה נכון לפונקציות רציפות במידה שווה, אבל סתם פונקציה רציפה (המוגדרת על קטע סופי שאינו סגור) עלולה להיות בעלת אורך אינסופי בקטע; למשל הפונקציה בקטע .

תכונות של פונקציות רציפות

שני המשפטים נכונים באופן כללי יותר, עבור פונקציה ממשית רציפה המוגדרת על קבוצה קומפקטית (בכל מרחב טופולוגי).

  • משפט ערך הביניים אומר כי פונקציה רציפה בקטע מקבלת כל ערך שבין הערכים אותם היא מקבלת בקצות הקטע.
  • פונקציה רציפה בקטע סגור אינטגרבילית בו.
  • רציפות בנקודה היא תנאי הכרחי (אך לא מספיק) לקיום נגזרת באותה נקודה.

נקודות אי רציפות

Postscript-viewer-blue.svg ערך מורחב – נקודת אי רציפות

נקודה שבה הפונקציה אינה רציפה נקראת נקודת אי רציפות. ניתן למיין את נקודות אי הרציפות לשלושה סוגים:

  1. אי רציפות סליקה: יש לפונקציה גבול בנקודה אך ערך הפונקציה שם שונה מן הגבול, או שהפונקציה כלל אינה מוגדרת באותה נקודה.
  2. אי רציפות מהסוג הראשון: אין בנקודה גבול, אך קיימים גבולות חלקיים. למשל, אם הפונקציה היא פונקציה ממשית במשתנה יחיד, קיים הגבול מימין, וקיים הגבול משמאל, אך הם שונים זה מזה.
  3. אי רציפות מהסוג השני: לפחות אחד מהגבולות, משמאל או מימין, אינו קיים.

אפיון קבוצת נקודות הרציפות של פונקציה

אם פונקציה, כאשר מרחבים מטריים, אזי קבוצת נקודות הרציפות של היא קבוצת , דהיינו חיתוך בן מנייה של קבוצות פתוחות. ממשפט הקטגוריה של בייר ניתן להראות שקבוצת המספרים הרציונליים אינה קבוצת , ולכן אין פונקציה ממשית שרציפה רק במספרים הרציונליים, ואינה רציפה במספרים האי-רציונליים.

דוגמאות

ראו גם

קישורים חיצוניים


{{bottomLinkPreText}} {{bottomLinkText}}
פונקציה רציפה (אנליזה)
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.