For faster navigation, this Iframe is preloading the Wikiwand page for Eenheidsbol.

Eenheidsbol

Uit Wikipedia, de vrije encyclopedie

voor verschillende normen de eenheidsbol in twee dimensies: eenheidscirkels
voor verschillende normen de eenheidsbol in twee dimensies: eenheidscirkels

In de wiskunde is een eenheidsbol of eenheidssfeer de verzameling punten op afstand 1 vanaf een vast centraal middelpunt. Formeel maakt men onderscheid tussen bol of sfeer en bal (massieve bol). Een eenheidsbal of gesloten eenheidsbol is de verzameling punten op een afstand kleiner dan of gelijk aan 1 vanaf het middelpunt.

Meestal is er een specifiek punt aangewezen als de oorsprong van de te bestuderen ruimte en wordt ervan uitgegaan dat de eenheidsbol gecentreerd is rondom dit punt.

Het belang van de eenheidsbol is dat elke bol kan worden getransformeerd tot een eenheidsbol door een combinatie van translatie en verschalen. (Op dezelfde wijze kan elke bal tot de eenheidsbal getransformeerd worden.) Op deze manier kunnen de eigenschappen van bollen in het algemeen worden teruggebracht tot de studie van de eenheidsbol.

Soms bedoelt men met eenheidssfeer de eenheidsbol in een drie-dimensionale ruimte in het bijzonder. De eenheidsbol en -bal in twee dimensies noemt men de eenheidscirkel en eenheidsschijf.

Eenheidsbollen in de euclidische ruimte

In een euclidische ruimte van n dimensies is de eenheidsbol de verzameling van alle punten

die voldoen aan de vergelijking

en de gesloten eenheidsbal is een verzameling van alle punten die voldoen aan de ongelijkheid

Algemene formules voor oppervlakte en inhoud

De inhoud en de oppervlakte van de eenheidsbol in een n-dimensionale euclidische ruimte komen in vele belangrijke formules binnen de analyse voor. De oppervlakte van de eenheidsbol in n-dimensies, in de literatuur vaak aangegeven door , kan als volgt worden uitgedrukt door gebruik te maken van de gammafunctie,

De inhoud van een eenheidsbol is

Niet-algemene formules voor oppervlakte en inhoud

In de drie-dimensionale euclidische ruimte is de inhoud van een eenheidsbol

en is de oppervlakte gelijk aan

Eenheidsballen in de genormeerde vectorruimte

Preciezer gezegd, de open eenheidsbal in een genormeerde vectorruimte , met de norm is

Het is het inwendige van de gesloten eenheidsbal van

Deze laatste is de disjuncte vereniging van de eerste en hun gemeenschappelijke grensvlak, de eenheidsbol van

Commentaar

De vorm van de eenheidsbol is volledig afhankelijk van de gekozen norm; de eenheidsbol kan zelfs hoeken hebben, en kan bijvoorbeeld lijken op in het geval van de norm op de De ronde bal wordt opgevat als de gebruikelijke hilbertruimte-norm. In het eindigdimensionale op euclidische afstand gebaseerde geval is het grensvlak van deze ronde bal dat wat meestal wordt bedoeld met de eenheidsbol.

Generalisaties

Metrische ruimtes

Alle drie de bovenstaande definities kunnen eenvoudig worden gegeneraliseerd naar een metrische ruimte, met betrekking tot een gekozen oorsprong. Topologische overwegingen met betrekking tot het inwendige, de afsluiting en het grensvlak hoeven echter niet altijd op dezelfde wijze van toepassing te zijn. In de ultrametrische ruimten bijvoorbeeld leiden deze definities tegelijkertijd tot open- en gesloten verzamelingen en kan de eenheidsbol in sommige metrische ruimten zelfs leeg zijn.

Kwadratische vormen

Als V een lineaire ruimte is met een echte kwadratische vorm F: V → R, dan wordt (x ∈ V:F (x) = 1) soms de eenheidsbol van V genoemd. Twee-dimensionale voorbeelden zijn de split-complexe getallen en de duale getallen. Wanneer F negatieve waarden accepteert, dan wordt (x ∈ V:F(x) = − 1) de tegenbol genoemd.

Zie ook

  • eenheidscirkel en eenheidsschijf: de eenheidsbol en eenheidsbal in twee dimensies
  • sfeer en bal: artikels over bollen en ballen met willekeurige straal (niet noodzakelijk 1).
  • bol: over de bol en de bal in drie dimensies, waar deze meestal sfeer respectievelijk bol genoemd worden!
  • eenheidsvierkant
{{bottomLinkPreText}} {{bottomLinkText}}
Eenheidsbol
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Wikiwand 2.0 is here 🎉! We've made some exciting updates - No worries, you can always revert later on