For faster navigation, this Iframe is preloading the Wikiwand page for Getal van Skewes.

Getal van Skewes

Uit Wikipedia, de vrije encyclopedie

Het getal van Skewes is het eerste gehele getal x waarvoor geldt dat:

waar de priemgetal-telfunctie is en de logaritmische integraalfunctie is.

De Zuid-Afrikaanse wiskundige Stanley Skewes gaf in 1933 de eerste benadering van dit getal:

Het getal van Skewes is dan ook naar hem genoemd. Deze benadering is erop gebaseerd dat de Riemann-hypothese geldt. Skewes gaf in 1955 een benadering waarvoor deze veronderstelling niet nodig is.

In latere jaren is de bovengrens met behulp van computers, die de nulpunten van de Riemann-zèta-functie zeer precies kunnen berekenen, naar beneden bijgesteld.


{{bottomLinkPreText}} {{bottomLinkText}}
Getal van Skewes
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Wikiwand 2.0 is here 🎉! We've made some exciting updates - No worries, you can always revert later on