For faster navigation, this Iframe is preloading the Wikiwand page for Transcendent getal.

Transcendent getal

Uit Wikipedia, de vrije encyclopedie

Getalverzamelingen

Natuurlijke getallen
Gehele getallen
Rationale getallen
Reële getallen
Complexe getallen
Quaternionen
p-adische getallen
Hyperreële getallen
Surreële getallen
Transfiniete getallen

Irrationale getallen
Algebraïsche getallen
Transcendente getallen
Imaginaire getallen

Een reëel getal, of algemener een complex getal, noemt men transcendent als niet het nulpunt is van een polynoom van eindige graad met geheeltallige of algemener rationale coëfficiënten . Voor al dergelijke polynomen geldt dus:

Een getal dat wel het nulpunt van een polynoom is, heet een algebraïsch getal. Een transcendent getal is een getal dat niet algebraïsch is.

Ieder transcendent getal is irrationaal, want een rationaal getal is een oplossing van een lineaire vergelijking met geheeltallige coëfficiënten, dus algebraïsch.

Een transcendent getal kan op de getallenlijn of in het complexe vlak niet door een constructie met passer en liniaal worden aangegeven.

Er zijn overaftelbaar veel transcendente getallen en maar aftelbaar veel algebraïsche getallen. Dit geldt ook op een interval. Daaruit volgt dat een stochastische variabele met continue uniforme verdeling bijna zeker transcendent is.

Een transcendent getal is, zoals opgemerkt, een irrationaal getal, maar niet ieder irrationaal getal is transcendent. Bijvoorbeeld is irrationaal en algebraïsch.

Geschiedenis

Voorbeelden

Getallen, waarvan bekend is dat zij transcendent zijn:

  • als algebraïsch en ongelijk aan nul is, door de stelling van Lindemann-Weierstrass en, in het bijzonder, zelf,
  • , door de stelling van Lindemann-Weierstrass,
  • , de constante van Gelfond, alsmede , volgens de stelling van Gelfond-Schneider,
  • waarin algebraïsch, maar ongelijk aan 0 of 1, en irrationaal algebraïsch is, volgens de stelling van Gelfond-Schneider; in het bijzonder:
    • , de constante van Gelfond-Schneider, ook het hilbertgetal.

Open problemen

Van enkele reële getallen is nog niet bekend of ze transcendent of algebraïsch zijn, zoals van de constante van Euler-Mascheroni.

{{bottomLinkPreText}} {{bottomLinkText}}
Transcendent getal
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Wikiwand 2.0 is here 🎉! We've made some exciting updates - No worries, you can always revert later on