For faster navigation, this Iframe is preloading the Wikiwand page for Transfiniet getal.

Transfiniet getal

Uit Wikipedia, de vrije encyclopedie

Getalverzamelingen

Natuurlijke getallen
Gehele getallen
Rationale getallen
Reële getallen
Complexe getallen
Quaternionen
p-adische getallen
Hyperreële getallen
Surreële getallen
Transfiniete getallen

Irrationale getallen
Algebraïsche getallen
Transcendente getallen
Imaginaire getallen

Een transfiniet getal is een kardinaalgetal of ordinaalgetal dat groter dan alle eindige getallen is, maar niet noodzakelijkerwijs wat Georg Cantor noemde "absoluut oneindig". De term transfiniet werd bedacht door Cantor, die sommige van de implicaties van het woord oneindig wilde vermijden, dit in verband met die objecten die niet eindig zijn. Weinig wiskundigen schrikken heden ten dage nog terug voor het begrip oneindigheid; het is nu algemeen aanvaard gebruik om aan transfiniete kardinaal- en ordinaalgetallen als "oneindig" te refereren. De term "transfiniet" blijft echter ook in gebruik.

De transfiniete ordinalen en kardinalen vallen niet samen, zoals de eindige ordinalen en kardinalen. De eerste transfiniete ordinaal wordt aangeduid met ω; hierop volgt ω+1, ω+2, ..., ω+ω = 2ω, 3ω, 4ω, ..., ωω = ω2, ω3, ..., ωω, ...

De eerste transfiniete kardinaal is (spreek uit: alef-nul), deze is de kardinaliteit van de natuurlijke getallen, en meer in het algemeen van alle aftelbaar oneindige verzamelingen. heeft de volgende eigenschappen, voor :

En, voor eindige :

Om een grotere kardinale oneindigheid dan te bereiken, moet men verheffen tot de macht :

Betekenis

Het transfiniete getal is de kardinaliteit van de natuurlijke getallen, van de gehele getallen, van de rationale getallen en van de algebraïsche getallen.

Onder de continuümhypothese is de kardinaliteit van de reële getallen, van de transcendente getallen, van de complexe getallen, van de punten op een rechte of een lijnstuk en ook van de punten in het heelal. Onder meer is dus:

Dan is de kardinaliteit van de reële functies van een reële veranderlijke.

Voor en volgende wordt interpretatie steeds lastiger.

{{bottomLinkPreText}} {{bottomLinkText}}
Transfiniet getal
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Wikiwand 2.0 is here 🎉! We've made some exciting updates - No worries, you can always revert later on