For faster navigation, this Iframe is preloading the Wikiwand page for Liczby rzeczywiste.

Liczby rzeczywiste

Oś liczbowa – interpretacja geometryczna zbioru liczb rzeczywistych
Oś liczbowa – interpretacja geometryczna zbioru liczb rzeczywistych

Zbiór liczb rzeczywistych – rozszerzenie zbioru liczb wymiernych (jako przestrzeni metrycznej) do przestrzeni zupełnej; równoważnie – rozszerzenie zbioru liczb wymiernych (z topologią przedziałową) do przestrzeni spójnej. Zbiór liczb rzeczywistych jest więc ciałem uporządkowanym spełniającym aksjomat ciągłości. Liczby rzeczywiste, które nie są wymierne, nazywane są liczbami niewymiernymi. Zbiór liczb rzeczywistych oznaczany jest symbolem lub

Z punktu widzenia algebry ciało liczb rzeczywistych jest rozszerzeniem ciała liczb wymiernych. Podzbiorami zbioru liczb rzeczywistych są np. liczby wymierne, niewymierne, przestępne, całkowite, naturalne, ujemne, pierwiastki liczb dodatnich itd. Zbiór liczb rzeczywistych można z kolei rozszerzyć do zbioru liczb zespolonych. Modelem geometrycznym zbioru liczb rzeczywistych jest tzw. prosta rzeczywista, czyli oś liczbowa[1].

Historia

Pitagorejczycy zauważyli, że przekątna kwadratu i jego bok są niewspółmierne, tj. nie istnieje odcinek, dla którego przekątna i bok byłyby naturalnymi wielokrotnościami. W dzisiejszym języku oznaczało to, że żadna liczba wymierna nie jest stosunkiem długości przekątnej kwadratu i jego boku (zob. dowód niewymierności pierwiastka z 2). Była to pierwsza wykryta niewymierność, pierwszą znaną klasyfikację niewymierności przeprowadził Teajtet.

Znana od czasów starożytnych liczba pi, którą definiuje się jako stosunek długości dowolnego okręgu do jego średnicy, także okazała się liczbą niewymierną – udowodnił to w roku 1767 Lambert. Każda wykryta niewymierność oznaczała tzw. lukę w zbiorze liczb wymiernych. Konstrukcja liczb rzeczywistych jest wypełnieniem wszystkich możliwych luk. Za pierwszą udaną konstrukcję liczb rzeczywistych uważa się teorię proporcji Eudoksosa opisaną w Elementach Euklidesa. Chociaż pierwszą formalną definicję liczb rzeczywistych zaproponował Richard Dedekind używając liczb wymiernych oraz wprowadzonych przez siebie przekrojów[2].

Definicje i konstrukcje

 Osobny artykuł: Aksjomaty i konstrukcje liczb.

Zbiór liczb rzeczywistych można zdefiniować aksjomatycznie.

Jest to struktura algebraiczna spełniającą następujące aksjomaty:

  1. jest ciałem,
  2. jest porządkiem liniowym spełniającym dodatkowo warunki:
    • jeśli to
    • jeśli i to
  3. spełniony jest aksjomat ciągłości: każdy niepusty i ograniczony z góry podzbiór ma kres górny.

Ponieważ aksjomatyka nie gwarantuje istnienia obiektu spełniającego te aksjomaty, przeprowadza się konstrukcje liczb rzeczywistych biorące za punkt wyjścia liczby wymierne.

Istnieje kilka klasycznych sposobów konstrukcji zbioru liczb rzeczywistych:

Niektóre własności

Własności topologiczne

Naturalną metryką w zbiorze liczb rzeczywistych jest tzw. metryka euklidesowa, czyli wartość bezwzględna różnicy dwóch liczb. Prosta rzeczywista wyposażona w tę metrykę jest zupełną przestrzenią metryczną. Ponadto jest ona przestrzenią ośrodkową (ośrodkiem jest np. zbiór liczb wymiernych).

Rodzinę zbiorów otwartych (topologię) na prostej można określić definiując zbiory otwarte:

Zbiór jest otwarty

czyli zbiór jest otwarty, gdy wraz z każdym jego punktem zawiera pewien przedział otwarty zawierający ten punkt.

Bazą tej topologii jest np. rodzina przedziałów otwartych o końcach wymiernych. Wynika stąd, że liczby rzeczywiste spełniają drugi aksjomat przeliczalności. Przestrzeń rzeczywista jest ponadto spójna i lokalnie zwarta.

Ważnymi niestandardowymi topologiami określonymi na zbiorze liczb rzeczywistych są tzw. prosta Sorgenfreya i prosta Michaela.

Własności teoriomnogościowe

Reprezentacja w urządzeniach cyfrowych

Popularną, przybliżoną, komputerową reprezentacją liczby rzeczywistej jest liczba zmiennoprzecinkowa i typ zmiennoprzecinkowy. Najczęściej jest to implementacja standardu IEEE 754.

Liczby rzeczywiste mogą być reprezentowane również przez typ pozwalający obliczać ich przybliżenia z dowolną dokładnością, co umożliwia dokładną arytmetykę rzeczywistą[3][4].

Zobacz też

Przypisy

  1. Liczby rzeczywiste, [w:] Encyklopedia PWN [online] [dostęp 2021-07-21].
  2. Hans Niels Jahnke: A history of analysis. Providence, RI: American Mathematical Society, 2003, s. 11. ISBN 0-8218-2623-9. OCLC 51607350.
  3. iRRAM – a software library for exact real arithmetic. [dostęp 2021-01-03].
  4. exact-real: Exact real arithmetic. [dostęp 2021-01-03].

Linki zewnętrzne

{{bottomLinkPreText}} {{bottomLinkText}}
Liczby rzeczywiste
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Wikiwand 2.0 is here 🎉! We've made some exciting updates - No worries, you can always revert later on