For faster navigation, this Iframe is preloading the Wikiwand page for Rekenkundig getal.

Rekenkundig getal

Uit Wikipedia, de vrije encyclopedie

Een natuurlijk getal heet een rekenkundig getal als het rekenkundig gemiddelde van zijn delers een geheel getal is.

Het rekenkundig gemiddelde van de delers van noemt men de rekenkundige functie :

Hierin is de som van alle positieve delers van en het aantal positieve delers van . Als een geheel getal is, dus als een deler is van , heet een rekenkundig getal.

Voorbeeld: 14 heeft als delers 1, 2, 7 en 14. Het rekenkundig gemiddelde daarvan is (1+2+7+14)/4 = 6, dus 14 is een rekenkundig getal. Het getal 12 is geen rekenkundig getal, want de som van de delers van 12 is 1+2+3+4+6+12 = 28 en het gemiddelde 28/6 is geen geheel getal.

De eerste rekenkundige getallen zijn:

1, 3, 5, 6, 7, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 27, 29, 30, 31, 33, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, ...[1]

De functie is een multiplicatieve functie. Immers en zijn beide multiplicatieve functies. Hieruit volgt dat als twee rekenkundige getallen relatief priem zijn, hun product ook een rekenkundig getal is.

Elk oneven priemgetal is een rekenkundig getal; immers de delers ervan zijn 1 en , en is een geheel getal omdat een even getal is. 2 is geen rekenkundig getal en ook geen enkele macht van 2 is een rekenkundig getal.[2]

De asymptotische dichtheid van de verzameling van rekenkundige getallen is gelijk aan 1.[3]

Voor elk getal bestaat er een geheel getal , zodanig datde vergelijking ten minste oplossingen heeft.[3]

{{bottomLinkPreText}} {{bottomLinkText}}
Rekenkundig getal
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Wikiwand 2.0 is here 🎉! We've made some exciting updates - No worries, you can always revert later on